Markov's Inequality on Locally Lipschitzian Compact Subsets of \mathbb{R}^{N} in L^{p}-Spaces

Pierre Goetgheluck
Département de mathématiques, Université de Paris-sud, Centre d'Orsay, Bâtiment 425, 91405 Orsay Cedex, France
Communicated by Oved Shisha

Received June 18, 1984

Notation

For any $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N} \quad$ we set $\quad x^{\prime}=\left(x_{1}, \ldots, x_{N-1}\right), \quad\|x\|=$ $\left(\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right)^{1 / 2}, \quad\left\|x^{\prime}\right\|=\left(\sum_{i=1}^{N-1}\left|x_{i}\right|^{2}\right)^{1 / 2}, \quad D_{i}=\partial / \partial x_{i} \quad(i=1, \ldots, N)$. For any $e \in \mathbb{R}^{N}, \quad D_{e}$ denotes the derivation in the direction $e: \quad\left(D_{e} f\right)(x)=$ $\left.\operatorname{Lim}_{h \rightarrow 0}(f(x+h e)-f(x)) / h\|e\|\right)$. Let $a \in \mathbb{R}^{N}$ and $r>0$; we set $B(a, r)=$ $\left\{x \in \mathbb{R}^{N} /\|x-a\|<r\right\}, S(a, r)=\left\{x \in \mathbb{R}^{N} /\|x-a\|=r\right\}$. A real-valued function φ defined on \mathbb{R}^{N} is said to be locally Lipschitzian if for any $a \in \mathbb{R}^{N}$, there exist a neighborhood V of a and a positive constant k such that for any x and y in V we have $|\varphi(x)-\varphi(y)| \leqslant k\|x-y\|$. (We say φ is a k-locally Lipschitzian function in V.)

Let Ω be an open set in \mathbb{R}^{N} with boundary $\partial \Omega . \Omega$ is said to be Lipschitzian if for any $a \in \partial \Omega$ there exist r, real and positive, φ locally Lipschitzian, local coordinates x_{1}, \ldots, x_{N} with origin at a, such that if $x \in \Omega \cap B(a, r)$, then $x_{N}>\varphi\left(x^{\prime}\right)$ and if $x \in \partial \Omega \cap B(a, r)$ then, $x_{N}=\varphi\left(x^{\prime}\right)$.

We denote by H_{n} the set of polynomials in N variables, of total degree at most n, and by $L^{p}(E)$ the space of measurable functions satisfying

$$
\begin{array}{ll}
\|f\|_{L^{p}(E)}=\left[\int_{E}|f(x)|^{p} d x\right]^{1 / p}<\infty & (1 \leqslant p<\infty), \\
\|f\|_{L^{x}(E)}=\operatorname{ess} \sup _{x \in E}|f(x)|<\infty & (p=\infty) .
\end{array}
$$

The Main Result

The aim of this paper is to prove the following statement:
Theorem. Let Ω be a bounded locally Lipschitzian open set in \mathbb{R}^{N}. Then
(i) for every $p \geqslant 1$ there exists a constant $C(\Omega, p)$ such that for any $n \in \mathbb{N}$ and any $P \in H_{n}$ we have

$$
\begin{equation*}
\left\|D_{i} P\right\|_{L^{P}(\bar{\Omega})} \leqslant C(\Omega, p) n^{2}\|P\|_{I I^{R}(\bar{\Omega})} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

(ii) there exists a constant $C(\Omega)$ such that for any $p \geqslant 1$, $C(\Omega, p) \leqslant C(\Omega)$.

This theorem provides a generalization of Markov's inequality in L^{p} in the case of several variables. For the case of an interval see [2]. The assumption that Ω is locally Lipschitzian is fundamental to get the exponent 2 in (1). A counterexample is given in [1]: if $\Omega=\left\{(x, y) \in \mathbb{R}^{2} /\right.$ $\left.0<x<1 ; 0<y<x^{p} ; p>1\right\}$ the optimal exponent is $2 p$. Furthermore, 2 is obviously the sharp exponent when Ω is a hypercube.

Sketch of the Proof. For any $a \in \Omega$ we find a neighborhood V_{a} of a such that

$$
\begin{equation*}
\left\|D_{i} P\right\|_{L^{p}\left(\bar{\Omega} \cap V_{u}\right)} \leqslant C_{u} n^{2}\|P\|_{L^{p}(\bar{\Omega})} \quad(i=1, \ldots, N) \tag{2}
\end{equation*}
$$

where C_{a} is a positive constant depending only on p and Ω. Since it is closed and bounded, $\bar{\Omega}$ is a compact set and thus can be covered with a finite set of neighborhoods such as V_{a}, denoted by $V_{a_{1}}, \ldots, V_{a_{k}}$. Clearly,

$$
\left\|D_{i} P\right\|_{L^{n}(\bar{\Omega})} \leqslant \sum_{j=1}^{k}\left\|D_{i} P\right\|_{\left.L^{p_{(\bar{\Omega}} \cap v_{u},}\right)}
$$

From this we immediately deduce the theorem.
To prove (2) after a linear change of variable, we can use local orthonormal coordinates. Furthermore if $e_{1}, e_{2}, \ldots, e_{N}$ are N independent elements in \mathbb{R}^{N}, proving (2) is equivalent to proving that there exists a constant C_{a}^{\prime} such that for $i=1, \ldots, N$

$$
\begin{equation*}
\left\|D_{e_{i}} P\right\|_{L^{\prime}\left(\bar{\Omega} \cap V_{a}\right)} \leqslant C_{a}^{\prime} n^{2}\|P\|_{L^{r}(\bar{\Omega})} . \tag{3}
\end{equation*}
$$

We shall prove the inequalities (3).

Markov's Inequality on an Interval in L^{p}-spaces

Proposition 1 [2]. Let $I=[-1,1]$. For any $p \geqslant 1$ there exists a constant $C(p)$ such that for any polynomial P of degree at most n

$$
\left\|P^{\prime}\right\|_{L^{p}(I)} \leqslant C(p) n^{2}\|P\|_{L^{p}(I)} .
$$

Exponent 2 is sharp, as can be seen by taking $P=P_{n}^{(2,2)}$ (Jacobi's polynomials in the ultraspherical case). In [2, p. 735] this result is also given in a more accurate form

$$
\left\|P^{\prime}\right\|_{L^{\prime}(l)} \leqslant 2 n\left[(n+1)^{n+1} n^{n}\right]\|P\|_{L^{\prime}(f)}
$$

and if $p>1$,

$$
\left\|P^{\prime}\right\|_{L^{p}(I)} \leqslant 2 n\left[(p-1)^{1 /(p)-1}(n p+1)^{n+(1 / p)}(n p-p+1)^{1-n-(1 / p)}\right]\|P\|_{L^{p}(l)} .
$$

It is easy to prove that the expressions between the square brackets are always less than $2 e^{2} n$ and therefore $C(p)<4 e^{2}$.

Corollary 1. Let J be an interval with length l. For any $p \geqslant 1$ and any $P \in H_{n}$ we have

$$
\begin{align*}
& \left\|P^{\prime}\right\|_{L_{P}^{(J)}} \leqslant 2 C(p) l^{-1} n^{2}\|P\|_{L^{P}(J)}, \tag{4}\\
& \left\|P^{\prime}\right\|_{L^{p}(J)} \leqslant 8 e^{2} l^{-1} n^{2}\|P\|_{L^{P}(J)} . \tag{5}
\end{align*}
$$

Proof of the Theorem

We are led to consider two types of points in $\bar{\Omega}$: points in Ω and points in $\partial \Omega$.
Let a be in Ω. There exists $r>0$ such that $V_{a}=\left\{x /\left|x_{j}-a_{j}\right|<r\right.$ $(j=1, \ldots, N)\}$ is included in Ω. Using (4), and P being interpreted as a function of x_{i} with the other variables held fixed, we get

$$
\int_{a_{i}-r}^{a_{i}+r}\left|D_{i} P(x)\right|^{p} d x_{i} \leqslant C(p)^{p} r^{-p} n^{2 p} \int_{a_{i}-r}^{a_{i}+r}|P(x)|^{p} d x_{i}
$$

Integrating both sides as functions of $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{N}$ yields

$$
\begin{aligned}
\left\|D_{i} P\right\|_{L_{P}\left(V_{a}\right)} & \leqslant C(p) r^{-1} n^{2}\|P\|_{L^{(}\left(V_{a}\right)} \\
& \leqslant C(p) r^{-1} n^{2}\|P\|_{L^{(\Omega)}}
\end{aligned}
$$

Let a be in $\partial \Omega$. First we give an outline of the method. We construct a neighborhood V_{a} of a such that $V_{a} \cap \bar{\Omega}$ is a union of parallel segments, i.e., a part of cylinder bounded by two regular surfaces. This is possible, due to the fact that Ω is locally Lipschitzian (a continuous frontier is not a sufficient assumption). Results of [2] are then applied to the individual intervals.

Figure 1

There exists an open ball $B(a, r)$, a k-locally Lipschitzian function φ, local coordinates with origin at a such that

$$
\begin{aligned}
\partial \Omega \cap B(a, r) & =\left\{x \in B(a, r) / x_{N}=\varphi\left(x^{\prime}\right)\right\} \\
\Omega \cap B(a, r) & =\left\{x \in B(a, r) / x_{N}>\varphi\left(x^{\prime}\right)\right\}
\end{aligned}
$$

From now on we use these coordinates; then $a=0, \quad \varphi(0)=0$, $B(a, r)=B(0, r)$.

Let $e_{1}=(1,0,0, \ldots, 0,2 k)$ be in $\mathbb{R}^{N}, \quad b \in \partial \Omega \cap B(0, r)$ and $D=$ $\left\{b+\lambda e_{1} / \lambda \in \mathbb{R}\right\}$ (see Fig. 1).

Lemma 1. $D \cap \partial \Omega \cap B(0, r)=\{b\}$.
Proof. To prove the line D intersects $\partial \Omega$ in the ball only at the point b we establish that if $x=b+\lambda e_{1}$ with $\lambda \neq 0$ then $x_{N} \neq \varphi\left(x^{\prime}\right)$. Indeed for such an x, setting $b=\left(b^{\prime}, \varphi\left(b^{\prime}\right)\right)$ we have $x_{1}=b_{1}, x_{2}=b_{2}, \ldots, x_{N-1}=b_{N-1}$, $x_{N}=2 k\left(x_{1}-b_{1}\right)+\varphi\left(b^{\prime}\right)$.

Since φ is k-locally Lipschitzian we have $\left|\varphi\left(x^{\prime}\right)-\varphi\left(b^{\prime}\right)\right| \leqslant k\left\|x^{\prime}-b^{\prime}\right\|=$ $k\left|x_{1}-b_{1}\right|$ and, using $x_{N}-\varphi\left(x^{\prime}\right)=2 k\left(x_{1}-b_{1}\right)+\varphi\left(b^{\prime}\right)-\varphi\left(x^{\prime}\right)$, we get $\left|x_{N}-\varphi\left(x^{\prime}\right)\right| \geqslant k\left|x_{1}-b_{1}\right|$ whence $x_{N}-\varphi\left(x^{\prime}\right) \neq 0$ if $x_{1} \neq b_{1}$.

Fig. 2. The segment $[b, d]$.

Let $\quad b^{\prime} \in \mathbb{R}^{N-1}$ satisfying $\left\|b^{\prime}\right\| \leqslant \frac{1}{2} r\left(1+k^{2}\right)^{-1 / 2}$. We have $\left|\varphi\left(b^{\prime}\right)\right|=$ $\left|\varphi\left(b^{\prime}\right)-\varphi(0)\right| \leqslant k\left\|b^{\prime}\right\| \leqslant \frac{1}{2} k r\left(1+k^{2}\right)^{-1 / 2}$. Thus $\left\|\left(b^{\prime}, \varphi\left(b^{\prime}\right)\right)\right\|<r / 2 \quad$ and $b=\left(b^{\prime}, \varphi\left(b^{\prime}\right)\right)$ belongs to $B(0, r / 2)$ and therefore to $B(0, r)$. The half-line $\left\{x \in \mathbb{R}^{N} / x=b+\lambda e_{1} ; \lambda \geqslant 0\right\}$ intersects $S(0, r)$ at d (see Fig. 2).

Lemma 2. The segment $(b, d]$ is included in Ω and its length is greater than $r / 2$.

Proof. From Lemma 1, $(b, d]$ is included in Ω. Furthermore $\|d-b\| \geqslant$ $\|d\|-\|b\|=r-\|b\|$. Then $b \in B(0, r / 2)$ implies $\|d-b\| \geqslant r / 2$.

The line $\left\{\lambda e_{1} / \hat{\lambda} \in \mathbb{R}\right\}$ intersects $\partial \Omega \cap B(0, r)$ only at the origin. Therefore at the point $x=r e_{1} /\left(2\left\|e_{1}\right\|\right)$ we have $x_{N}-\varphi\left(x^{\prime}\right)>0$ and, at the point $-x$ we have $x_{N}-\varphi\left(x^{\prime}\right)<0 . \varphi$ is a continuous function (all Lipschitzian functions are continuous) then $x_{N}-\varphi\left(x^{\prime}\right)$ remains positive in a neighborhood V_{1} of $r e_{1} /\left(2\left\|e_{1}\right\|\right)$ and negative in a neighborhood V_{2} of $-r e_{1} /\left(2\left\|e_{1}\right\|\right)$. Thus any segment with ends respectively in V_{1} and V_{2} intersects $\partial \Omega$. Whence using Lemma 2, we get:

Corollary 2. For every α satisfying $0<\alpha<\frac{1}{2} r k\left(1+k^{2}\right)^{-1 / 2}$ any line crossing $B(0, \alpha)$ and parallel to e_{1} intersects $\partial \Omega \cap B(0, r)$ only at one point. Furthermore $D \cap \Omega \cap B(0, r)$ is a segment of length at least $r / 2$ (see Fig. 3).

We put $\sin \theta=\left(1+4 k^{2}\right)^{-1 / 2}, \cos \theta=2 k\left(1+4 k^{2}\right)^{-1 / 2}$ and we introduce new coordinates defined by

$$
\begin{aligned}
y_{1} & =x_{1} \cos \theta-x_{N} \sin \theta \\
y_{N} & =x_{1} \sin \theta+x_{N} \cos \theta \\
y_{i} & =x_{i} \quad(i=2, \ldots, N-1)
\end{aligned}
$$

Fig. 3. How to find α.

With the y coordinates $S(0, r)$ is still defined by $\sum_{i=1}^{N} y_{i}^{2}=r^{2}$. Let A and B be in \mathbb{R}^{N}. We denote by $\left(a_{1}, \ldots, a_{N}\right)$ and $\left(b_{1}, \ldots, b_{N}\right)$ the x coordinates of A and B respectively and by $\left(u_{1}, \ldots, u_{N}\right)$ and $\left(v_{1}, \ldots, v_{N}\right)$ the y coordinates of A and B, respectively.

Lemma 3. Assume $\left|a_{N}-b_{N}\right| \leqslant k\left\|a^{\prime}-b^{\prime}\right\|$. Then $\left|u_{N}-v_{N}\right| \leqslant$ $\left(\left(1+2 k^{2}\right) / k\right)\left\|u^{\prime}-v^{\prime}\right\|$.

Proof. If $u_{N} \neq v_{N}$ we have

$$
\begin{aligned}
& \frac{\left\|u^{\prime}-v^{\prime}\right\|^{2}}{\left|u_{N}-v_{N}\right|^{2}} \\
& \quad=\frac{\left(\cos \theta\left(a_{1}-b_{1}\right)-\sin \theta\left(a_{N}-b_{N}\right)\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\cdots+\left(a_{N-1}-b_{N-1}\right)^{2}}{\left(\sin \theta\left(a_{1}-b_{1}\right)+\cos \theta\left(a_{N}-b_{N}\right)\right)^{2}}
\end{aligned}
$$

Finding the minimum of the last expression on $\left\{(a, b) /\left|a_{N}-b_{N}\right| \leqslant\right.$ $\left.k\left\|a^{\prime}-b^{\prime}\right\|\right\}$ is equivalent to finding the minimum of $\left(\left(X_{1} \cos \theta-\right.\right.$ $\left.\left.X_{N} \sin \theta\right)^{2}+X_{2}^{2}+\cdots+X_{N}^{2}{ }_{1}\right) /\left(X_{1} \sin \theta+X_{N} \cos \theta\right)^{2}$ on the set $\left\{X / X_{1}^{2}+\right.$ $\left.X_{2}^{2}+\cdots+X_{N-1}^{2}=1,\left|X_{N}\right| \leqslant k\right\}$, or the minimum of $\left((X \cos \theta-Y \sin \theta)^{2}+\right.$ $\left.1-X^{2}\right) /(X \sin \theta+Y \cos \theta)^{2}$ on the set $\{(X, Y) /|X| \leqslant 1,|Y| \leqslant k\}$. It is attained when $X=1$ and $Y=k$ which yields $\| u^{\prime}-v^{\prime}\left|/\left|u_{N}-v_{N}\right| \geqslant\right.$ $k /\left(1+2 k^{2}\right)$ and $\left|u_{N}-v_{N}\right| \leqslant\left(\left(1+2 k^{2}\right) / k\right)\left\|u^{\prime}-v^{\prime}\right\|$.

Let $C Y_{e_{1}}$ be the open neighborhood of the origin defined in the y coordinates by $C Y_{e_{1}}=B(0, r) \cap\left\{y /\left\|y^{\prime}\right\|<\alpha\right\}$, where α is the constant of Corollary 2 (see Fig. 4).

Lemma 4. There exists a real-valued locally Lipschitzian function ψ defined in \mathbb{R}^{N-1} such that in the y coordinates $C Y_{e_{1}} \cap \partial \Omega=\left\{y / y_{N}=\psi\left(y^{\prime}\right)\right\}$ and $C Y_{c_{1}} \cap \Omega=\left\{y / y_{N}>\psi\left(y^{\prime}\right)\right\}$.

Fig. 4. The set $C Y_{c_{1}}$.

Proof. Let y^{\prime} satisfy $\left\|y^{\prime}\right\|<\alpha$. From Corollary 2, the line through $\left(y^{\prime}, 0\right)$ parallel to e_{1} (i.e., parallel to $0 y_{N}$ in the y coordinates) intersects $\partial \Omega$ at only one point in $B(0, r)$; let $\left(y^{\prime}, y_{N}\right)$ be that point. We put $y_{N}=\psi\left(y^{\prime}\right)$. Clearly ψ will satisfy the requirements if we can prove it is locally Lipschitzian in $C Y_{e_{1}}$. Let u^{\prime} and v^{\prime} in \mathbb{R}^{N-1} be such that $\left\|u^{\prime}\right\|<\alpha,\left\|v^{\prime}\right\|<\alpha .\left(u^{\prime}, \psi\left(u^{\prime}\right)\right)$ and $\left(v^{\prime}, \psi\left(v^{\prime}\right)\right)$ belong to $\partial \Omega$ and then can be written $\left(a^{\prime}, \varphi\left(a^{\prime}\right)\right),\left(b^{\prime}, \varphi\left(b^{\prime}\right)\right)$ in the x coordinates and we have $\left|\varphi\left(a^{\prime}\right)-\varphi\left(b^{\prime}\right)\right| \leqslant k\left\|a^{\prime}-b^{\prime}\right\|$. Then from Lemmas $3,\left|\psi\left(u^{\prime}\right)-\psi\left(v^{\prime}\right)\right| \leqslant\left(\left(1+2 k^{2}\right) / k\right)\left\|u^{\prime}-v^{\prime}\right\|$. Therefore ψ is locally Lipschitzian.

Lemma 5. For any polynomial $P \in H_{n}$ we have

$$
\left\|\left(\partial / \partial y_{N}\right) P\right\|_{L^{\left.P_{1} C Y_{c_{1}}\right)}} \leqslant 4 C(p) r^{-1} n^{2}\|P\|_{\left.L^{P_{(} C Y_{c_{1}}}\right)}
$$

Proof. Let us consider $C Y_{e_{1}}$ as an union of segments parallel to $0 y_{N}$ of length greater than $r / 2$, bounded by surfaces $y_{N}=\psi\left(y^{\prime}\right)$ and $y_{N}=\left(r^{2}-y_{1}^{2}-\cdots-y_{N-1}^{2}\right)^{1 / 2}$. Since ψ is measurable (it is locally Lipschitzian, therefore continuous), using (4) we can write, when $\left\|y^{\prime}\right\|<\alpha$

$$
\begin{aligned}
& \int_{\psi\left(y^{\prime}\right)}^{\left(r^{2}-y_{1}^{2}-\cdots-y_{N-1}^{2}\right)^{1,2}}\left|\left(\partial / \partial y_{N}\right) P\left(y_{1}, \ldots, y_{N}\right)\right|^{p} d y_{N} \\
& \quad \leqslant(4 C(p))^{p} r^{-p} n^{2 p} \int_{\psi\left(y^{\prime}\right)}^{\left(r^{2}-v_{1}^{2}-\cdots-y_{N-1}^{2}\right)^{1,2}}\left|P\left(y_{1}, \ldots, y_{N}\right)\right|^{p} d y_{N} .
\end{aligned}
$$

Integrating the two sides of this estimate over $\left\{y^{\prime} /\left\|y^{\prime}\right\|<\alpha\right\}$ leads to the required inequality.

To complete the proof of the main theorem, we set

$$
\begin{array}{rlrl}
e_{2} & =(0,1,0,0, \ldots, 0,2 k), & & e_{3} \\
=(0,0,1,0, \ldots, 0,2 k), \\
e_{N-1} & =(0,0,0,0, \ldots, 0,1,2 k), & & e_{N}
\end{array}
$$

For every i, using a process similar to the one we used for e_{1}, we can find a neighborhood $C Y_{c_{i}}$ of the origin, such that for any $P \in H_{n}$,

$$
\left\|D_{c_{i}} P\right\|_{L^{\prime}\left(C Y_{e_{i}} \cap \bar{\Omega}\right)} \leqslant 4 C(p) r^{-1} n^{2}\|P\|_{L^{p}\left(C Y_{t_{1}} \cap \bar{\Omega}\right)} .
$$

We set $V_{a}=\bigcap_{i=0}^{N} C Y_{c_{i}}$. Then for every i we have

$$
\left\|D_{e_{1}} P\right\|_{L^{p}\left(V_{a} \cap \bar{\Omega}\right)} \leqslant 4 C(p) r^{-1} n^{2}\|P\|_{L^{n}(\bar{\Omega})}
$$

which completes the proof of inequalities (3).
To establish the (ii)-statement of the theorem we proceed in the same way using inequality (5) of Corollary 1 instead of inequality (4).

References

1. P. Goetgheluck, Inégalité de Markov dans les ensembles effilés, J. Approx. Theory $\mathbf{3 0}$ (1980), 149-154.
2. E. Hille, G. Szegö, and J. D. Tamarkin, On some generalization of a theorem of A. Markoff, Duke Math. J. 3 (1937), 729-739.
