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NOTATION

For any x=(x1, ...,XN)E[RN we set x'=(X1, ..·,xN_d, Ilxll=
(L~~llxiI2)1/2, Ilx'II=(L~~-11Ixr)1/2, D,=iJjiJx, (i=l, ...,N). For any
eE[RN, De denotes the derivation in the directione: (Dej)(x)=
Limh_o(f(x+he)-f(x))jhllell). Let aE[RN and r>O; we set B(a,r)=
{x E [RNjllx - all < r}, S(a, r) = {x E [RNjllx - all = r}. A real-valued function
cP defined on [RN is said to be locally Lipschitzian if for any a E [RN, there
exist a neighborhood V of a and a positive constant k such that for any x
and y in V we have Icp(x)-cp(y)1 ~kllx-yll. (We say cp is a k-locally
Lipschitzian function in V.)

Let Q be an open set in [RN with boundary iJQ. Q is said to be Lipschitz­
ian if for any a E iJQ there exist r, real and positive, cp locally Lipschitzian,
local coordinates Xl,.", X N with origin at a, such that if x E Q n B(a, r), then
xN>cp(x') and if xEiJQnB(a,r) then, xN=cp(x').

We denote by H n the set of polynomials in N variables, of total degree at
most n, and by LP(E) the space of measurable functions satisfying

IlfIIU(El=lLlf(x)IPdXJIP <00

Ilfll PtE) = ess sup If(x)1 < 00
XE E

THE MAIN RESULT

(1 ~p < 00),

(p = 00'),

The aim of this paper is to prove the following statement:

THEOREM. Let Q be a bounded locally Lipschitzian open set in [RN. Then
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(i) for e[:er)' p?: I there exists a constant C( Q, p) such that jl)/, afl)'
n E' N and any P E' H" we hal'('

(i = 1,. .. , IV), (I)

(ii) there exists a constant C(Q) such that for an)' p?: 1,
C(Q,p)~C(Q).

This theorem provides a generalization of Markov's inequality in LP in
the case of several variables. For the case of an interval see [2]. The
assumption that Q is locally Lipschitzian is fundamental to get the
exponent 2 in (1). A counterexample is given in [1]: if Q = { (x, y) E' [R2/

0< x < 1; 0 < Y < xl'; p> I} the optimal exponent is 2p. Furthermore, 2 is
obviously the sharp exponent when Q is a hypercube.

Sketch of the Prool For any a E' Q we find a neighborhood Va of a such
that

(i= I,..., IV), (2)

where Ca is a positive constant depending only on p and Q. Since it is
closed and bounded, Q is a compact set and thus can be covered with a
finite set of neighborhoods such as V,,, denoted by Val ,... , Vw Clearly,

k

IIDiPllv(.Q)~ I IIDiPIIU(.QnV"I·
!

l~ 1

From this we immediately deduce the theorem.

To prove (2) after a linear change of variable, we can use local orthonor­
mal coordinates. Furthermore if e 1 , e2, ... , eN are IV independent elements in
[RN, proving (2) is equivalent to proving that there exists a constant C;,
such that for i = 1,... , IV

(3)

We shall prove the inequalities (3).

MARKOV'S INEQUALITY ON AN INTERVAL IN LP-SPACES

PROPOSITION 1 [2]. Let 1= [ -1, 1]. For any p?: 1 there exists a con­
stant C(p) such that for any polynomial P of degree at most n

IIP'II V(I) ~ C(p) n 2 1I P llu(l)'
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Exponent 2 is sharp, as can be seen by taking P = p~2. 2) (Jacobi's
polynomials in the ultraspherical case). In [2, p. 735 J this result is also
given in a more accurate form

and if p > 1,

11P'llv(I)~2n[(p-l)I'/I')-'(np+ l)n+(I/I')(np-p+ l),n-(l/I')J IIPllvll)'

It is easy to prove that the expressions between the square brackets are
always less than 2e 2n and therefore C( p) < 4e 2

.

COROLLARY 1. Let J be an interval with length I. For any p ~ 1 and any
PE H n we have

11P'11lJ'(J) ~ 2C(p) I In21IPIIlJ'IJl'

II P' IluIJ) ~ 8e 21 1n2
11 PIIIJ'IJ)'

PROOF OF THE THEOREM

(4)

(5)

We are led to consider two types of points in Q: points in Q and points
in aQ.

Let a be in Q. There exists r > 0 such that Va = {x/lxJ - a) < r
(j = 1,,,., N)} is included in Q. Using (4), and P being interpreted as a
function of Xi with the other variables held fixed, we get

Integrating both sides as functions of XI'"'' Xi _ 1 , Xi + I'"'' X N yields

IIDiPIIU(Val ~ C(p) r- 'n
21IPII VIVa)

~ C(p) r- 1n211PII VIQ)'

Let a be in aQ. First we give an outline of the method. We construct a
neighborhood Va of a such that Va n Q is a union of parallel segments, i.e.,
a part of cylinder bounded by two regular surfaces. This is possible, due
to the fact that Q is locally Lipschitzian (a continuous frontier is not a
sufficient assumption). Results of [2J are then applied to the individual
intervals.
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FIGURE 1

There exists an open ball B(a, r), a k-Iocally Lipschitzian function <p,
local coordinates with origin at a such that

ail n B(a, r) = {x E B(a, r)/x N= <p(x')},

il n B(a, r) = {x E B(a, r)/xN> <p(x')}.

From now on we use these coordinates; then a = 0, <p(o) = 0,
B(a, r) = B(O, r).

Let e, =(1,0,0, ... ,0,2k) be in ~N, bEoilnB(O,r) and D=
{b+Ael/),E~} (see Fig. I).

LEMMA 1. D n ail n B(O, r) = {b}.

Proof To prove the line D intersects ail in the ball only at the point b
we establish that if x=b+Ae j with AioO then xNio<p(x'). Indeed for such
an x, setting b=(b',<p(b')) we have x,=b j , x 2 =b 2 , ••• , xN_j=bN_1>
x N=2k(x , -bd+<p(b').

Since <p is k-Iocally Lipschitzian we have 1<p(x')-<p(b')1 ~kllx'-b'll =

klxj-bjl and, using x N-<p(x')=2k(x l -bd+<p(b')-<p(x'), we get
IxN-<p(x')1 ~klx,-bjl whence xN-<p(x')ioO if Xl iob l · I

X'

FIG. 2. The segment [b, d].
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Let b'E[RN-I satisfying 1Ib'11~!r(l+k2)-1/2. We have 1<p(b')I=
1<p(b')-<p(O)1 ~kllb'll ~!kr(1 +k2)-1/2. Thus II(b', <p(b'))11 <r/2 and
b = (b', <p(b')) belongs to B(O, r/2) and therefore to B(O, r). The half-line
{x E [RN/X = b + Ae l ; A~ O} intersects S(O, r) at d (see Fig. 2).

LEMMA 2. The segment (b, d] is included in Q and its length is greater
than r/2.

Proof From Lemma 1, (b, d] is included in Q. Furthermore lid - bll ~
Ildll-llbll =r-Ilbll· Then bEB(O, r/2) implies Iid-bil ~r/2. I

The line {Ae I / AE [R} intersects iJQ" B(O, r) only at the origin. Therefore
at the point x=re l /(21Ie l ll) we have xN-<p(x'»O and, at the point-x
we have xN-<p(x')<O. <p is a continuous function (all Lipschitzian
functions are continuous) then x N- <p(x') remains positive in a
neighborhood VI of re l /(21Ie l ll) and negative in a neighborhood V2 of
-re l /(21Ie l ll). Thus any segment with ends respectively in VI and V2 inter­
sects iJQ. Whence using Lemma 2, we get:

COROLLARY 2. For every rJ. satisfying 0< rJ. < !rk(1 + k2)-1/2 any line
crossing B(O, rJ.) and parallel to e I intersects iJQ" B(O, r) only at one point.
Furthermore D "Q " B(O, r) is a segment of length at least r/2 (see Fig. 3).

We put sin e= (1 + 4P)- 1/2, cos e= 2k( 1+ 4P) -1/2 and we introduce
new coordinates defined by

YI = XI cos e- X N sin e,
yN = X I sin e+ x N cos e,
Yi=X i (i = 2,..., N - 1).

FIG. 3. How to find rx.

X'
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With the y coordinates 5(0, r) is still defined by L,v I Y7 = r C
• Let A and B

be in [RN. We denote by (a l , ... , aN) and (hi ,... , h v ) the x coordinates of A
and B respectively and by (u I"'" UN) and (v I"'" 1'."1) the y coordinates of A
and B, respectively.

LEMMA 3. Assume IaN - hNI ~ k Ila' - h'll· Then luN-vNI ~

(( 1+ 2k2)/k)llu' - v'll.

Prool If UN # V N we have

Ilu' - v'11 2

luN-1'."f

(cos O(a l - bd- sin e(aN- bN))2 + (a2 - b2)2 + ... + (a N_ I - bN_,)2

(sin e(a l - b l ) + cos e(aN- bN))2

Finding the minImum of the last expression on {(a, b)/laN- bNI ~
klla' -b'll} is equivalent to finding the minimum of ((X, cos e­
Xv sin &f + X~ + ... + X1 I )/(X, sin e + X Ncos e)2 on the set {X/Xi +
X~ + ... + X~ 1= 1, IXNI ~ k}, or the minimum of ((X cos e - Y sin e)2 +
1 - X2)/(X sin e + Y cos e)2 on the set {(X, Y)/IXI ~ 1, IYI ~ k}. It is
attained when X=1 and Y=k which yields Ilu'-v'II/luN-VNI~

k/(1 +2e) and luN-vNI ~((l +2k2 )/k)llu'-v'll·
Let C Y"l be the open neighborhood of the origin defined in the y coor­

dinates by CY"l=B(O,r)n {y/IIy'11 <a}, where x is the constant of
Corollary 2 (see Fig. 4).

LEMMA 4. There exists a real-valued locally Lipschitzian function ljJ
defined in [RN-I such that in the Y coordinates eYe) n3Q= {Y/YN=ljJ(y')}
and CY"I n Q = {Y/YN > ljJ(y')}.

eYe,

'T-----f---.x

y'

FIG. 4. The set eYe,'
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Proof Let y' satisfy II y' II <x. From Corollary 2, the line through (y', 0)
parallel to e l (i.e., parallel to 0YN in the Y coordinates) intersects aQ at only
one point in B(O, r); let (y', YN) be that point. We put YN= 1jJ(y'). Clearly IjJ
will satisfy the requirements if we can prove it is locally Lipschitzian in
CYe\. Let u' and v' in IR N- 1 be such that Ilu'll <x, Ilv'll <x. (u', ljJ(u')) and
(v', ljJ(v')) belong to aQ and then can be written (a', <p(a')), (h', <p(h')) in
the x coordinates and we have 1<p(a')-<p(h')I~klla'-h'll. Then from
Lemmas 3, IIjJ(u') -1jJ(v')1 ~ ((1 + 2k2)/k)llu' - v'll. Therefore IjJ is locally
Lipschitzian.

LEMMA 5. For any polynomial PE HI! we have

II (a/aYN) Pllu(cyq ) ~ 4C(p) r - 1n2
11 Pllu(CY,\I'

Proof Let us consider CYe \ as an union of segments parallel to Oy N
of length greater than r/2, bounded by surfaces YN = t{1(y') and
YN = (r 2

- YT - ... - y~_ I) 1/2. Since t{1 is measurable (it is locally Lipschit­
zian, therefore continuous), using (4) we can write, when II y' II < x

(2_,;_ .. -,L\)12
1

(a/aYN) P(Y" ..., YNW dYN
J/J(y')

(r2 _ y 2_ __Y~'_lt2

~(4C(p))pr-Pn2Pf \ IP(Y"""YNWdYN'
J/J(y')

Integrating the two sides of this estimate over {y'/lly'll <x} leads to the
required inequality.

To complete the proof of the main theorem, we set

e2 = (0, 1,0,0,... ,0, 2k),

eN_I = (0, 0, 0, 0, ..., 0,1, 2k),

e3 = (0, 0,1,0, ...,0, 2k),

eN = ( - 1, 0, 0, 0, ... , 0, 2k).

For every i, using a process similar to the one we used for e l , we can find a
neighborhood CYe! of the origin, such that for any PE HI!'

IIDe,PIIU(cy"n Q) ~ 4C(p) r - 'n
2
11P1Iu(cY" nQ)'

We set Va = n~~o CYe,' Then for every i we have

which completes the proof of inequalities (3).
To establish the (ii )-statement of the theorem we proceed in the same

way using inequality (5) of Corollary 1 instead of inequality (4).
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