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NOTATION

For any x=(x;,.,xy)eRY we set x'=(x;,.,xy_;), |xl=
X D X =N %)%, D,=d/dx; (i=1,.,N). For any
ecR™ D, denotes the derivation in the directione: (D, f)(x)=
Lim, , o( f(x + he) — f(x))/h|le]). Let aeR" and r>0; we set B(a,r)=
{xeRY/|x—a| <r}, S(a,r)={xeR"/|x—a| =r}. A real-valued function
¢ defined on R" is said to be locally Lipschitzian if for any ae R”, there
exist a neighborhood V of a and a positive constant k such that for any x
and y in V we have |o(x)— @(y) <k|lx—y|. (We say ¢ is a k-locally
Lipschitzian function in V)

Let © be an open set in R with boundary 0Q. Q is said to be Lipschitz-
ian if for any a e 6Q there exist r, real and positive, ¢ locally Lipschitzian,
local coordinates x,,..., x , with origin at a, such that if x € Q n B(aq, r), then
xy>@(x") and if x€0Q2 n B(a, r) then, xy = p(x').

We denote by H, the set of polynomials in N variables, of total degree at
most n, and by L”(E) the space of measurable functions satisfying

1/p
= 1] <o 12p <o

ISl gy =88 sup | f(x)] < o0 (p=o0).

xek

THE MAIN RESULT
The aim of this paper is to prove the following statement:

THEOREM. Let Q be a bounded locally Lipschitzian open set in RY. Then
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(i) Jfor every p=1 there exists a constant C{82, p) such that for any
neN and any Pe H, we have

1D, Pli iy < CU2, p) 2l Pl irigsy (i= 1.y N), (1)
(1) there exists a constant C(Q) such that for anv p>=1,
C(Q, p) < C(Q).

This theorem provides a generalization of Markov’s inequality in L7 in
the case of several variables. For the case of an interval see [2]. The
assumption that Q 1is locally Lipschitzian is fundamental to get the
exponent 2 in (1). A counterexample is given in [1]: if Q= {(x,y)e R/
0<x<1;0<p<x”; p>1} the optimal exponent is 2p. Furthermore, 2 is
obviously the sharp exponent when Q is a hypercube.

Sketch of the Proof. For any ae 2 we find a neighborhood V', of a such
that

”DiPHL/‘(Qm l’ulgCunzHPHL/’(Q) (I: 1""e N)s (2)
where C, is a positive constant depending only on p and €. Since it is

closed and bounded, Q is a compact set and thus can be covered with a
finite set of neighborhoods such as ¥, denoted by V, ..., V. Clearly,

k
”DiPHU‘{Q)S Z HD,'PH Ii(émlq,/r

=1

From this we immediately deduce the theorem.

To prove (2) after a linear change of variable, we can use local orthonor-
mal coordinates. Furthermore if e, ¢,,.., ¢y are N independent elements in
R¥, proving (2) is equivalent to proving that there exists a constant C,,
such that for i=1,., N

HD(I,P“[/‘(QK\ Vﬂ)gc;nzl’P“U(Q;- (3)

We shall prove the inequalities (3).

MARKOV’S INEQUALITY ON AN INTERVAL IN LP-SPACES

ProposITION 1 [2]. Let I=[—1,1]. For any p=1 there exists a con-
stant C(p) such that for any polynomial P of degree at most n

1PNl ooy < Cp) n2 P oy
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Exponent 2 is sharp, as can be seen by taking P=P>? (Jacobi’s
polynomials in the ultraspherical case). In [2, p. 735] this result is also
given in a more accurate form

HP’”L‘(l)Szn[(n'*‘ 1)"“ n "] HPHLl(I)

and if p>1,

1P iy < 2nL(p = D)V~ Hmp + 1Y YPnp —p + 1) " TP oy

It is easy to prove that the expressions between the square brackets are
always less than 2e¢°n and therefore C(p) < 4e’.

COROLLARY 1. Let J be an interval with length l. For any p>1 and any
Pe H, we have

| Pl U’(J)gzc(p)[ l"IZHP”LPu)’ (4)
HP/”U(J)S&’E[ InzHPHU'ur (5)

PROOF OF THE THEOREM

We are led to consider two types of points in Q: points in £ and points
in 0Q2.

Let a be in Q. There exists r>0 such that V,={x/|x,—al<r
(j=1,.., N)} is included in Q. Using (4), and P being interpreted as a
function of x,; with the other variables held fixed, we get

di+r aj+r
[ D Py dx < Cpyr e [T PO dx,

a; = w—r

Integrating both sides as functions of x ..., x;,_{, X;, (..., X» yields

1D Pl irr, < C(p) "71”2“1)" LP(V,)
<C(p) r71n2||PHU(Q)~

Let a be in 09. First we give an outline of the method. We construct a
neighborhood V', of a such that ¥, Q is a union of parallel segments, i.e.,
a part of cylinder bounded by two regular surfaces. This is possible, due
to the fact that Q is locally Lipschitzian (a continuous frontier is not a
sufficient assumption). Results of [2] are then applied to the individual
intervals.



306 PIERRE GOETGHELUCK

%o
PSS 7[\ ) D
~
e ‘ f,‘/e1 I
/ )]
N / \
G / / A
\\‘\\ bj e i
- lr .
0/1 / X
[ ’
FIGURE 1

There exists an open ball B(a, r), a k-locally Lipschitzian function ¢,
local coordinates with origin at a such that

QN Bla, r)={xeBla,r)/xy=0(x')},
Qo Bla, ry={xe Bla, r)/xy> p(x")}.

From now on we use these coordinates; then a=0, ¢(0)=0,
B(a, r)= B(0, r).

Let e,=(1,0,0,.,0,2k) be in R" bedQnBO,r) and D=
{b+Je,/ieR} (see Fig. 1).

LEMMA 1. DndQn B(0,r)={b}.

Proof. To prove the line D intersects d€2 in the ball only at the point b
we establish that if x =5+ Ae, with 1#0 then x, # ¢(x’). Indeed for such
an x, setting b= (b, (b")) we have x,=b,, x,=5b5,., Xpy_,=bnr_1,
Xy=2k(x;—b)+ @)

Since ¢ is k-locally Lipschitzian we have |p(x')— @(b')| <k|x —b'|| =
k|lx,—b,| and, using xy—o(x")=2k(x;—-b;)+ @(b')—@(x'), we get
|xy—@(x) =klx, —b,| whence xy—@(x")#0if x;,#b,. |

Fig. 2. The segment [b, d].
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Let b'eRY~' satisfying [|b'| <ir(1+Kk*)""2 We have [o(b') =
l@(b') — @(0)] < kbl < Skr(1+k*)~"2 Thus [0, (")) <r/2 and
b= (¥, @(b’)) belongs to B(0, r/2) and therefore to B(0, r). The half-line
{xeRY/x=b+Je,; 4>0} intersects S(0, r) at d (see Fig. 2).

LemMma 2. The segment (b, d] is included in Q and its length is greater
than r/2.

Proof. From Lemma 1, (b, 4] is included in Q. Furthermore ||d—b| =
lidll — |16l =r — ||b|l. Then be B(0, r/2) implies |d—b| =r/2. |

The line {le,/A€ R} intersects 62 N B(0, r) only at the origin. Therefore
at the point x =re,/(2|e,||) we have x, — ¢(x")>0 and, at the point —x
we have xy—o(x')<0. ¢ is a continuous function (all Lipschitzian
functions are continuous) then x,—¢@(x') remains positive in a
neighborhood V| of re,/(2|e,|) and negative in a neighborhood V, of
—re/(2]le,]|). Thus any segment with ends respectively in V', and V, inter-
sects 0£2. Whence using Lemma 2, we get:

COROLLARY 2. For every a satisfying 0 <o <irk(1+k*)~'? any line
crossing B(0, a) and parallel to e, intersects 0Q n B(0, r) only at one point.
Furthermore D n Q2 B(0, r) is a segment of length at least v/2 (see Fig. 3).

We put sin 0= (1 +4k?) "' cos 0 = 2k(1 +4k*)~"? and we introduce
new coordinates defined by

Y =X, €088 —Xx,sinf,
Yn=X,8in 6+ x,cos b,

yi=xi (l.=2,..‘, N_ 1)~

'
L —req/2 “91”

FiG. 3. How to find o
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With the y coordinates S(0, r) is still defined by 3% |, y?=r". Let 4 and B
be in RY. We denote by (a,,.., ay) and (b,..., by) the x coordinates of A4
and B respectively and by (u,,..., uy) and (v,,..., ty) the y coordinates of A4
and B, respectively.

LEMMA 3. Assume |ay — by| < klla" — b'l. Then |uy—rvyl <
(1 + 26>k )|’ — 2.

Proof. 1f u, #v, we have

' —o'||?

|”,~'_U.~"2
_(cosO(a; —b)=sinOlay—by))’ +(a,—b:)" + - +(ay_—by )’
- (sinO(a, —b,)+cos Blay—b,))? .

Finding the minimum of the last expression on {(a, b)/lay—byl <
klla'—5'|} is equivalent to finding the minimum of ((X,cosf—
Xysin0)+ X34 - + X% )/(X,sin0+ X, cos0)” on the set {X/X?+
X3+ - +X% ,=1,]Xy <k}, or the minimum of ((X cos 6 — Y sin 0)° +
1—X)/(Xsin 0+ Ycos0)” on the set {(X, Y)/|XI<1, |Y[<k}. It is
attained when X=1 and Y=k which yields |u —v'||/luy—1vy=
k(1 +2k%) and |uy — vl <((1+2k3) k)| —v').

Let CY, be the open neighborhood of the origin defined in the y coor-
dinates by CY, =B(0,r)n{y/|y <a}, where « is the constant of
Corollary 2 (see Fig. 4).

LEMMA 4. There exists a real-valued locally Lipschitzian function
1

defined in R™ ™" such that in the y coordinates CY, néQ={y/yy=¥(y")}
and CY, 0 Q= {y/yn>y(y')}.

FiG. 4. The set CY,,.
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Proof. Let y' satisfy || y'|| <a. From Corollary 2, the line through (', 0)
parallel to e, (i.e., parallel to Oy, in the y coordinates) intersects 0§2 at only
one point in B(0, r); let (', y») be that point. We put y, =y(y’). Clearly
will satisfy the requirements if we can prove it is locally Lipschitzian in
CY, . Let u' and v’ in RY ™' be such that [u'| <o, [|v']| <o (&, Y(u')) and
(v, Yy (v")) belong to 62 and then can be written (a’, @(a’)), (', @(b')) in
the x coordinates and we have |@(a')— @(b')| <klla’—b'|. Then from
Lemmas 3, |[y(u')—y(v')] < ((1+2k*)/k)|u' —v'|. Therefore  is locally
Lipschitzian.

LEMMA 5. For any polynomial Pe H, we have

[(8/dyy) Pl (CY,) <4C(p)r- lnzﬂp“m('y‘,l)-

Proof. Let us consider C'Y,, as an union of segments parallel to Oy,
of length greater than r/2, bounded by surfaces y,=y(y) and
yy=(r*—yi— - —y2 )" Since y is measurable (it is locally Lipschit-
zian, therefore continuous), using (4) we can write, when ||y'|| <a

1.2

R

(,Z,y%, -
| (0109 5) P31 v )17 diy
Yy

I TN Y
—¥n-1)

e
<(@C(p)) r | P31 1) vy
[2830]

Integrating the two sides of this estimate over {y'/|y'|| <a} leads to the
required inequality.
To complete the proof of the main theorem, we set

e,=(0,1,0,0,.,0, 2k), e,=1(0,0,1,0,.,0,2k), s
ey_1=100,0,0,0,.,0, 1, 2k), exn=1(-1,0,0,0,..,0, 2k).

For every i, using a process similar to the one we used for ¢,, we can find a
neighborhood C'Y,, of the origin, such that for any Pe H,,

HD(’,P“ LACY, 0 3) <4C(p) r71”2||PHU’((‘qus§)-
We set V, =", CY,. Then for every i we have
||D(),P||L/’(V[,m§)<4c([’) "71"2”1)”1}(9),

which completes the proof of inequalities (3).
To establish the (ii)-statement of the theorem we proceed in the same
way using inequality (5) of Corollary 1 instead of inequality (4).
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