Markov's Inequality on Locally Lipschitzian Compact Subsets of \mathbb{R}^N in L^p -Spaces

PIERRE GOETGHELUCK

Département de mathématiques, Université de Paris-sud, Centre d'Orsay, Bâtiment 425, 91405 Orsay Cedex, France

Communicated by Oved Shisha

Received June 18, 1984

NOTATION

For any $x = (x_1, ..., x_N) \in \mathbb{R}^N$ we set $x' = (x_1, ..., x_{N-1})$, $||x|| = (\sum_{i=1}^N |x_i|^2)^{1/2}$, $||x'|| = (\sum_{i=1}^{N-1} |x_i|^2)^{1/2}$, $D_i = \partial/\partial x_i$ (i = 1, ..., N). For any $e \in \mathbb{R}^N$, D_e denotes the derivation in the direction e: $(D_e f)(x) = \lim_{h \to 0} (f(x+he) - f(x))/h||e||$). Let $a \in \mathbb{R}^N$ and r > 0; we set $B(a, r) = \{x \in \mathbb{R}^N / ||x-a|| < r\}$, $S(a, r) = \{x \in \mathbb{R}^N / ||x-a|| = r\}$. A real-valued function φ defined on \mathbb{R}^N is said to be locally Lipschitzian if for any $a \in \mathbb{R}^N$, there exist a neighborhood V of a and a positive constant k such that for any x and y in V we have $|\varphi(x) - \varphi(y)| \le k ||x-y||$. (We say φ is a k-locally Lipschitzian function in V.)

Let Ω be an open set in \mathbb{R}^N with boundary $\partial \Omega$. Ω is said to be Lipschitzian if for any $a \in \partial \Omega$ there exist *r*, real and positive, φ locally Lipschitzian, local coordinates $x_1, ..., x_N$ with origin at *a*, such that if $x \in \Omega \cap B(a, r)$, then $x_N > \varphi(x')$ and if $x \in \partial \Omega \cap B(a, r)$ then, $x_N = \varphi(x')$.

We denote by H_n the set of polynomials in N variables, of total degree at most n, and by $L^p(E)$ the space of measurable functions satisfying

$$\|f\|_{L^{p}(E)} = \left[\int_{E} |f(x)|^{p} dx\right]^{1/p} < \infty \qquad (1 \le p < \infty),$$

$$\|f\|_{L^{\infty}(E)} = \operatorname{ess\,sup}_{x \in E} |f(x)| < \infty \qquad (p = \infty).$$

THE MAIN RESULT

The aim of this paper is to prove the following statement:

THEOREM. Let Ω be a bounded locally Lipschitzian open set in \mathbb{R}^N . Then

(i) for every $p \ge 1$ there exists a constant $C(\Omega, p)$ such that for any $n \in \mathbb{N}$ and any $P \in H_n$ we have

$$\|D_i P\|_{L^p(\bar{\Omega})} \leq C(\Omega, p) n^2 \|P\|_{L^p(\bar{\Omega})} \qquad (i = 1, ..., N),$$
(1)

(ii) there exists a constant $C(\Omega)$ such that for any $p \ge 1$, $C(\Omega, p) \le C(\Omega)$.

This theorem provides a generalization of Markov's inequality in L^p in the case of several variables. For the case of an interval see [2]. The assumption that Ω is locally Lipschitzian is fundamental to get the exponent 2 in (1). A counterexample is given in [1]: if $\Omega = \{(x, y) \in \mathbb{R}^2 | 0 < x < 1; 0 < y < x^p; p > 1\}$ the optimal exponent is 2p. Furthermore, 2 is obviously the sharp exponent when Ω is a hypercube.

Sketch of the Proof. For any $a \in \Omega$ we find a neighborhood V_a of a such that

$$\|D_i P\|_{L^p(\bar{\Omega} \cap V_a)} \leq C_a n^2 \|P\|_{L^p(\bar{\Omega})} \qquad (i = 1, ..., N),$$
(2)

where C_a is a positive constant depending only on p and Ω . Since it is closed and bounded, $\overline{\Omega}$ is a compact set and thus can be covered with a finite set of neighborhoods such as V_a , denoted by $V_{a1},...,V_{ak}$. Clearly,

$$\|D_iP\|_{L^p(\tilde{\Omega})} \leq \sum_{j=1}^k \|D_iP\|_{L^p(\tilde{\Omega} \cap V_{a_j})}.$$

From this we immediately deduce the theorem.

To prove (2) after a linear change of variable, we can use local orthonormal coordinates. Furthermore if $e_1, e_2, ..., e_N$ are N independent elements in \mathbb{R}^N , proving (2) is equivalent to proving that there exists a constant C'_a such that for i = 1, ..., N

$$\|D_{e_{l}}P\|_{L^{p}(\bar{\Omega} \cap V_{a})} \leqslant C_{a}'n^{2}\|P\|_{L^{p}(\bar{\Omega})}.$$
(3)

We shall prove the inequalities (3).

MARKOV'S INEQUALITY ON AN INTERVAL IN L^{p} -spaces

PROPOSITION 1 [2]. Let I = [-1, 1]. For any $p \ge 1$ there exists a constant C(p) such that for any polynomial P of degree at most n

$$||P'||_{L^{p}(I)} \leq C(p) n^{2} ||P||_{L^{p}(I)}.$$

Exponent 2 is sharp, as can be seen by taking $P = P_n^{(2,2)}$ (Jacobi's polynomials in the ultraspherical case). In [2, p. 735] this result is also given in a more accurate form

$$\|P'\|_{L^{1}(I)} \leq 2n[(n+1)^{n+1}n^{-n}] \|P\|_{L^{1}(I)}$$

and if p > 1,

$$\|P'\|_{L^{p}(I)} \leq 2n \left[(p-1)^{(1/p)-1} (np+1)^{n+(1/p)} (np-p+1)^{1-n-(1/p)} \right] \|P\|_{L^{p}(I)}.$$

It is easy to prove that the expressions between the square brackets are always less than $2e^2n$ and therefore $C(p) < 4e^2$.

COROLLARY 1. Let J be an interval with length l. For any $p \ge 1$ and any $P \in H_n$ we have

$$\|P'\|_{L^{p}(J)} \leq 2C(p) \, l^{-1} n^{2} \|P\|_{L^{p}(J)}, \tag{4}$$

$$\|P'\|_{L^{p}(J)} \leq 8e^{2l-1}n^{2} \|P\|_{L^{p}(J)}.$$
(5)

PROOF OF THE THEOREM

We are led to consider two types of points in $\overline{\Omega}$: points in Ω and points in $\partial \Omega$.

Let *a* be in Ω . There exists r > 0 such that $V_a = \{x/|x_j - a_j| < r (j = 1,..., N)\}$ is included in Ω . Using (4), and *P* being interpreted as a function of x_i with the other variables held fixed, we get

$$\int_{a_i-r}^{a_i+r} |D_i P(x)|^p \, dx_i \leq C(p)^p \, r^{-p} n^{2p} \int_{a_i-r}^{a_i+r} |P(x)|^p \, dx_i.$$

Integrating both sides as functions of $x_1, ..., x_{i-1}, x_{i+1}, ..., x_N$ yields

$$\|D_i P\|_{L^p(V_a)} \leq C(p) r^{-1} n^2 \|P\|_{L^p(V_a)}$$
$$\leq C(p) r^{-1} n^2 \|P\|_{L^p(\bar{\Omega})}.$$

Let a be in $\partial\Omega$. First we give an outline of the method. We construct a neighborhood V_a of a such that $V_a \cap \overline{\Omega}$ is a union of parallel segments, i.e., a part of cylinder bounded by two regular surfaces. This is possible, due to the fact that Ω is locally Lipschitzian (a continuous frontier is not a sufficient assumption). Results of [2] are then applied to the individual intervals.

FIGURE 1

There exists an open ball B(a, r), a k-locally Lipschitzian function φ , local coordinates with origin at a such that

$$\partial \Omega \cap B(a, r) = \{ x \in B(a, r) / x_N = \varphi(x') \},\$$
$$\Omega \cap B(a, r) = \{ x \in B(a, r) / x_N > \varphi(x') \},\$$

From now on we use these coordinates; then a = 0, $\varphi(0) = 0$, B(a, r) = B(0, r).

Let $e_1 = (1, 0, 0, ..., 0, 2k)$ be in \mathbb{R}^N , $b \in \partial \Omega \cap B(0, r)$ and $D = \{b + \lambda e_1/\lambda \in \mathbb{R}\}$ (see Fig. 1).

LEMMA 1. $D \cap \partial \Omega \cap B(0, r) = \{b\}.$

Proof. To prove the line D intersects $\partial \Omega$ in the ball only at the point b we establish that if $x = b + \lambda e_1$ with $\lambda \neq 0$ then $x_N \neq \varphi(x')$. Indeed for such an x, setting $b = (b', \varphi(b'))$ we have $x_1 = b_1$, $x_2 = b_2$,..., $x_{N-1} = b_{N-1}$, $x_N = 2k(x_1 - b_1) + \varphi(b')$.

Since φ is k-locally Lipschitzian we have $|\varphi(x') - \varphi(b')| \le k ||x' - b'|| = k|x_1 - b_1|$ and, using $x_N - \varphi(x') = 2k(x_1 - b_1) + \varphi(b') - \varphi(x')$, we get $|x_N - \varphi(x')| \ge k|x_1 - b_1|$ whence $x_N - \varphi(x') \ne 0$ if $x_1 \ne b_1$.

FIG. 2. The segment [b, d].

Let $b' \in \mathbb{R}^{N-1}$ satisfying $||b'|| \leq \frac{1}{2}r(1+k^2)^{-1/2}$. We have $|\varphi(b')| = |\varphi(b') - \varphi(0)| \leq k||b'|| \leq \frac{1}{2}kr(1+k^2)^{-1/2}$. Thus $||(b',\varphi(b'))|| < r/2$ and $b = (b',\varphi(b'))$ belongs to B(0,r/2) and therefore to B(0,r). The half-line $\{x \in \mathbb{R}^{N}/x = b + \lambda e_1; \lambda \geq 0\}$ intersects S(0,r) at d (see Fig. 2).

LEMMA 2. The segment (b, d] is included in Ω and its length is greater than r/2.

Proof. From Lemma 1, (b, d] is included in Ω . Furthermore $||d-b|| \ge ||d|| - ||b|| = r - ||b||$. Then $b \in B(0, r/2)$ implies $||d-b|| \ge r/2$.

The line $\{\lambda e_1/\lambda \in \mathbb{R}\}\$ intersects $\partial \Omega \cap B(0, r)$ only at the origin. Therefore at the point $x = re_1/(2||e_1||)$ we have $x_N - \varphi(x') > 0$ and, at the point -xwe have $x_N - \varphi(x') < 0$. φ is a continuous function (all Lipschitzian functions are continuous) then $x_N - \varphi(x')$ remains positive in a neighborhood V_1 of $re_1/(2||e_1||)$ and negative in a neighborhood V_2 of $-re_1/(2||e_1||)$. Thus any segment with ends respectively in V_1 and V_2 intersects $\partial \Omega$. Whence using Lemma 2, we get:

COROLLARY 2. For every α satisfying $0 < \alpha < \frac{1}{2}rk(1+k^2)^{-1/2}$ any line crossing $B(0, \alpha)$ and parallel to e_1 intersects $\partial \Omega \cap B(0, r)$ only at one point. Furthermore $D \cap \Omega \cap B(0, r)$ is a segment of length at least r/2 (see Fig. 3).

We put $\sin \theta = (1 + 4k^2)^{-1/2}$, $\cos \theta = 2k(1 + 4k^2)^{-1/2}$ and we introduce new coordinates defined by

$$y_1 = x_1 \cos \theta - x_N \sin \theta,$$

$$y_N = x_1 \sin \theta + x_N \cos \theta,$$

$$y_i = x_i \qquad (i = 2, ..., N - 1).$$

FIG. 3. How to find α .

With the y coordinates S(0, r) is still defined by $\sum_{i=1}^{N} y_i^2 = r^2$. Let A and B be in \mathbb{R}^N . We denote by $(a_1, ..., a_N)$ and $(b_1, ..., b_N)$ the x coordinates of A and B respectively and by $(u_1, ..., u_N)$ and $(v_1, ..., v_N)$ the y coordinates of A and B, respectively.

LEMMA 3. Assume $|a_N - b_N| \leq k ||a' - b'||$. Then $|u_N - v_N| \leq ((1 + 2k^2)/k) ||u' - v'||$.

Proof. If $u_N \neq v_N$ we have

$$\frac{\|u'-v'\|^2}{|u_N-v_N|^2} = \frac{(\cos\theta(a_1-b_1)-\sin\theta(a_N-b_N))^2+(a_2-b_2)^2+\cdots+(a_{N-1}-b_{N-1})^2}{(\sin\theta(a_1-b_1)+\cos\theta(a_N-b_N))^2}.$$

Finding the minimum of the last expression on $\{(a, b)/|a_N - b_N| \le k \|a' - b'\|\}$ is equivalent to finding the minimum of $((X_1 \cos \theta - X_N \sin \theta)^2 + X_2^2 + \dots + X_{N-1}^2)/(X_1 \sin \theta + X_N \cos \theta)^2$ on the set $\{X/X_1^2 + X_2^2 + \dots + X_{N-1}^2 = 1, |X_N| \le k\}$, or the minimum of $((X \cos \theta - Y \sin \theta)^2 + 1 - X^2)/(X \sin \theta + Y \cos \theta)^2$ on the set $\{(X, Y)/|X| \le 1, |Y| \le k\}$. It is attained when X = 1 and Y = k which yields $\|u' - v'\|/|u_N - v_N| \ge k/(1 + 2k^2)$ and $|u_N - v_N| \le ((1 + 2k^2)/k)\|u' - v'\|$.

Let CY_{e_1} be the open neighborhood of the origin defined in the y coordinates by $CY_{e_1} = B(0, r) \cap \{y/||y'|| < \alpha\}$, where α is the constant of Corollary 2 (see Fig. 4).

LEMMA 4. There exists a real-valued locally Lipschitzian function ψ defined in \mathbb{R}^{N-1} such that in the y coordinates $CY_{e_1} \cap \partial \Omega = \{y/y_N = \psi(y')\}$ and $CY_{e_1} \cap \Omega = \{y/y_N > \psi(y')\}$.

FIG. 4. The set CY_{e_1} .

Proof. Let y' satisfy $||y'|| < \alpha$. From Corollary 2, the line through (y', 0) parallel to e_1 (i.e., parallel to $0y_N$ in the y coordinates) intersects $\partial\Omega$ at only one point in B(0, r); let (y', y_N) be that point. We put $y_N = \psi(y')$. Clearly ψ will satisfy the requirements if we can prove it is locally Lipschitzian in CY_{e_1} . Let u' and v' in \mathbb{R}^{N-1} be such that $||u'|| < \alpha$, $||v'|| < \alpha$. $(u', \psi(u'))$ and $(v', \psi(v'))$ belong to $\partial\Omega$ and then can be written $(a', \varphi(a'))$, $(b', \varphi(b'))$ in the x coordinates and we have $|\varphi(a') - \varphi(b')| \le k||a' - b'||$. Then from Lemmas 3, $|\psi(u') - \psi(v')| \le ((1 + 2k^2)/k)||u' - v'||$. Therefore ψ is locally Lipschitzian.

LEMMA 5. For any polynomial $P \in H_n$ we have

$$\|(\partial/\partial y_N) P\|_{L^p(CY_{e_1})} \leq 4C(p) r^{-1} n^2 \|P\|_{L^p(CY_{e_1})}.$$

Proof. Let us consider CY_{e_1} as an union of segments parallel to $0y_N$ of length greater than r/2, bounded by surfaces $y_N = \psi(y')$ and $y_N = (r^2 - y_1^2 - \cdots - y_{N-1}^2)^{1/2}$. Since ψ is measurable (it is locally Lipschitzian, therefore continuous), using (4) we can write, when $||y'|| < \alpha$

$$\int_{\psi(y')}^{(r^2 - y_1^2 - \dots - y_{N-1}^2)^{1/2}} |(\partial/\partial y_N) P(y_1, \dots, y_N)|^p dy_N$$

$$\leq (4C(p))^p r^{-p} n^{2p} \int_{\psi(y')}^{(r^2 - y_1^2 - \dots - y_{N-1}^2)^{1/2}} |P(y_1, \dots, y_N)|^p dy_N.$$

Integrating the two sides of this estimate over $\{y' | | y' | < \alpha\}$ leads to the required inequality.

To complete the proof of the main theorem, we set

$$e_2 = (0, 1, 0, 0, ..., 0, 2k),$$
 $e_3 = (0, 0, 1, 0, ..., 0, 2k),$...,
 $e_{N-1} = (0, 0, 0, 0, ..., 0, 1, 2k),$ $e_N = (-1, 0, 0, 0, ..., 0, 2k).$

For every *i*, using a process similar to the one we used for e_1 , we can find a neighborhood CY_{e_i} of the origin, such that for any $P \in H_n$,

$$\|D_{e_i}P\|_{L^p(CY_{e_i}\cap\bar{\Omega})} \leq 4C(p) r^{-1}n^2 \|P\|_{L^p(CY_{e_i}\cap\bar{\Omega})}.$$

We set $V_a = \bigcap_{i=0}^{N} CY_{e_i}$. Then for every *i* we have

$$\|D_{e_i}P\|_{L^{p}(V_a \cap \bar{\Omega})} \leq 4C(p) r^{-1}n^2 \|P\|_{L^{p}(\bar{\Omega})},$$

which completes the proof of inequalities (3).

To establish the (ii)-statement of the theorem we proceed in the same way using inequality (5) of Corollary 1 instead of inequality (4).

PIERRE GOETGHELUCK

References

- 1. P. GOETGHELUCK, Inégalité de Markov dans les ensembles effilés, J. Approx. Theory 30 (1980), 149-154.
- 2. E. HILLE, G. SZEGÖ, AND J. D. TAMARKIN, On some generalization of a theorem of A. Markoff, Duke Math. J. 3 (1937), 729-739.